Applied Sciences (Oct 2024)
Sustainable Building Tool by Energy Baseline: Case Study
Abstract
This study explores innovative methodologies for estimating the energy baseline (EnBL) of a university classroom building, emphasizing the critical roles of data quality and model selection in achieving accurate energy efficiency assessments. We compare time series models that are suitable for buildings with limited consumption data with univariate and multivariate regression models that incorporate additional variables, such as weather and occupancy. Furthermore, we investigate the advantages of dynamic simulation using the EnergyPlus engine (V5, USDOE United States) and Design Builder software v7, enabling scenario analysis for various operational conditions. Through a comprehensive case study at the UAO University Campus, we validate our models using daily monitoring data and statistical analysis in RStudio. Our findings reveal that model choice significantly influences energy consumption forecasts, leading to potential overestimations or underestimations of savings. By rigorously assessing statistical validation and error analysis results, we highlight the implications for decarbonization strategies in building design and operation. This research provides a valuable framework for selecting appropriate methodologies for energy baseline estimation, enhancing transparency and reliability in energy performance assessments. These contributions are particularly relevant for optimizing energy use and aligning with regulatory requirements in the pursuit of sustainable building practices.
Keywords