Crystals (Mar 2024)

Revisiting the Crystallography of {225}<i><sub>γ</sub></i> Martensite: How EBSD Can Help to Solve Long-Standing Controversy

  • Loïc Malet,
  • Stéphane Godet

DOI
https://doi.org/10.3390/cryst14030287
Journal volume & issue
Vol. 14, no. 3
p. 287

Abstract

Read online

Explaining the crystallography of iron alloys martensite with a {225}γ habit plane remains a challenging task within the phenomenological theory of martensite crystallography. The purpose of this study is to re-examine the martensite formed in a Fe-8Cr-1.1C alloy using EBSD, which has a better angular resolution than the conventional transmission electron diffraction techniques previously used. The results show that the single morphological plates, which hold a near {225}γ habit plane, are bivariant composites made up of two twin-related variants. It is shown that a {113}γ plane is systematically parallel to one of the three common 112α planes between the two twin-related crystals. This observation suggests that the lattice invariant strain of transformation occurs through a dislocation glide on the {113}γ ⟨110⟩γ system, rather than through twinning as is commonly accepted. Based on this assumption, the predictions of Bowles and Mackenzie’s original theory are in good agreement with the crystallographic features of {225}γ martensite. Unexpectedly, it is the high shear solution of the theory that gives the most accurate experimental predictions.

Keywords