Microorganisms (Sep 2023)

A Comparative Analysis of the Stomach, Gut, and Lung Microbiomes in <i>Rattus norvegicus</i>

  • Taif Shah,
  • Yuhan Wang,
  • Yixuan Wang,
  • Qian Li,
  • Jiuxuan Zhou,
  • Yutong Hou,
  • Binghui Wang,
  • Xueshan Xia

DOI
https://doi.org/10.3390/microorganisms11092359
Journal volume & issue
Vol. 11, no. 9
p. 2359

Abstract

Read online

Urban rats serve as reservoirs for several zoonotic pathogens that seriously endanger public health, destroy stored food, and damage infrastructure due to their close interaction with humans and domestic animals. Here, we characterize the core microbiomes of R. norvegicus’s stomach, gut, and lung using 16S rRNA next-generation Illumina HiSeq sequencing. The USEARCH software (v11) assigned the dataset to operational taxonomic units (OTUs). The alpha diversity index was calculated using QIIME1, while the beta diversity index was determined using the Bray–Curtis and Euclidean distances between groups. Principal component analyses visualized variation across samples based on the OTU information using the R package. Linear discriminant analysis, effect sizes (LEfSe), and phylogenetic investigation were used to identify differentially abundant taxa among groups. We reported an abundance of microbiota in the stomach, and they shared some of them with the gut and lung microbiota. A close look at the microbial family level reveals abundant Lactobacillaceae and Bifidobacteriaceae in the stomach, whereas Lactobacillaceae and Erysipelotrichaceae were more abundant in the gut; in contrast, Alcaligenaceae were abundant in the lungs. At the species level, some beneficial bacteria, particularly Lactobacillus reuteri and Lactobacillus johnsonii, and some potential pathogens, such as Bordetella hinzii, Streptococcus parauberis, Porphyromonas pogonae, Clostridium perfringens, etc., were identified in stomach, gut, and lung samples. Moreover, the alpha and beta diversity indexes revealed significant differences between the groups. Further analysis revealed abundant differential taxonomic biomarkers, i.e., increased Prevotellaceae and Clostridia in the lungs, whereas Campylobacteria and Lachnospirales were richest in the stomachs. In conclusion, we identified many beneficial, opportunistic, and highly pathogenic bacteria, confirming the importance of urban rats for public health. This study recommends a routine survey program to monitor rodent distribution and the pathogens they carry and transmit to humans and other domestic mammals.

Keywords