Science and Technology of Advanced Materials (Jan 2008)
Microwave-assisted synthesis of WS2 nanowires through tetrathiotungstate precursors
Abstract
Tungsten disulfide (WS2) nanowires have been synthesized through a microwave-assisted chemical route that uses tungstic acid, elemental sulfur and monoethanolamine as starting reagents for obtaining a precursor solution of tetrathiotungstate ions. Acidification of the precursor solution yields amorphous precipitates, which lead to the formation of nanowires of WS2 with thickness of about 5–10 nm when heated at 750 °C under argon atmosphere for 1.5 h. Phase and the microstructure of the prepared powders have been investigated through x-ray powder diffraction and high-resolution transmission electron microscopy, respectively. Optical absorption of the WS2 powders reveals a red shift of the exciton bands compared to bulk WS2.