Energies (Feb 2024)

Molecular and Carbon Isotopic Compositions of Crude Oils from the Kekeya Area of the Southwest Depression, Tarim Basin: Implications for Oil Groups and Effective Sources

  • Xiaojie Gao,
  • Qilin Xiao,
  • Zhushi Ge,
  • Suyang Cai,
  • Haizhu Zhang,
  • Xiang Wang,
  • Zhenping Xu,
  • Zhanghu Wang,
  • Xiaomin Xie,
  • Qiang Meng

DOI
https://doi.org/10.3390/en17030760
Journal volume & issue
Vol. 17, no. 3
p. 760

Abstract

Read online

Molecular and stable carbon isotopic compositions of 32 crude oils from the Kekeya area of the Southwest Depression, Tarim Basin, were analyzed comprehensively to clarify oil groups and trace oil sources. The results indicate that lacustrine shale sequences within the Upper-Middle Permian Pusige Formation (P3–2p) are the major effective oil sources; the thermal maturation effects exert the crucial impact on geochemical compositions of crude oils. In the Kekeya structural belt, crude oils produced from the Lower-Neogene, Middle-Paleogene and Middle-Cretaceous sandstone reservoirs were generated mainly from deeply buried P3–2p at the late-to-high maturity stage. These condensates are depleted in terpanes, steranes and triaromatic steranes and enriched in adamantanes and diamantanes. The evaluated thermal maturity levels of crude oils by terpanoids and steranes are generally lower than that of diamondoids, implying at least two phases of oil charging. In the Fusha structural belt, oils produced from the Lower-Jurassic reservoirs (J1s) of Well FS8 were generated from the local P3–2p at the middle to late mature stage. On the contrary, these oils are relatively rich in molecular biomarkers such as terpanes and steranes and depleted in diamondoids with only adamantanes detectable. The P3–2p-associated oils can migrate laterally from the Kekeya to Fusha structural belt, but not to the location of Well FS8. The Middle-Lower Jurassic (J1–2) lacustrine shales as the major oil sources are limited to the area around Well KS101 in the Kekeya structural belt. Crude oils originated from J1–2 and P3–2p can mix together within the Cretaceous reservoirs of Well KS101 by presenting the concurrence of high concentrations of terpane and sterane biomarkers and diamondoids as well as 2–4% 13C-enriched n-alkanes than those of P3–2p derived oils. This study provides a better understanding of hydrocarbon sources and accumulation mechanisms and hence petroleum exploration in this region.

Keywords