Biomedicines (Nov 2022)

Immune Checkpoint Molecules and Glucose Metabolism in HIV-Induced T Cell Exhaustion

  • Yee Teng Chan,
  • Heng Choon Cheong,
  • Ting Fang Tang,
  • Reena Rajasuriar,
  • Kian-Kai Cheng,
  • Chung Yeng Looi,
  • Won Fen Wong,
  • Adeeba Kamarulzaman

DOI
https://doi.org/10.3390/biomedicines10112809
Journal volume & issue
Vol. 10, no. 11
p. 2809

Abstract

Read online

The progressive decline of CD8+ cytotoxic T cells in human immunodeficiency virus (HIV)-infected patients due to infection-triggered cell exhaustion and cell death is significantly correlated with disease severity and progression into the life-threatening acquired immunodeficiency syndrome (AIDS) stage. T cell exhaustion is a condition of cell dysfunction despite antigen engagement, characterized by augmented surface expression of immune checkpoint molecules such as programmed cell death protein 1 (PD-1), which suppress T cell receptor (TCR) signaling and negatively impact the proliferative and effector activities of T cells. T cell function is tightly modulated by cellular glucose metabolism, which produces adequate energy to support a robust reaction when battling pathogen infection. The transition of the T cells from an active to an exhausted state following pathogen persistence involves a drastic change in metabolic activity. This review highlights the interplay between immune checkpoint molecules and glucose metabolism that contributes to T cell exhaustion in the context of chronic HIV infection, which could deliver an insight into the rational design of a novel therapeutic strategy.

Keywords