Scientific Reports (Dec 2022)

The effects of temperature stress and population origin on the thermal sensitivity of Lymantria dispar L. (Lepidoptera: Erebidae) larvae

  • Larisa Ilijin,
  • Anja Grčić,
  • Marija Mrdaković,
  • Milena Vlahović,
  • Dajana Todorović,
  • Aleksandra Filipović,
  • Dragana Matić,
  • Vesna Perić Mataruga

DOI
https://doi.org/10.1038/s41598-022-26506-2
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Increased environmental temperature is one of the most frequent stresses effecting metabolic rate in herbivorous insect species. Our goal was to compare the influence of increased environmental temperature and induced thermotolerance on the activity of midgut phosphatases and brain tissue hsp70 concentration in 5th instar Lymantria dispar larvae originating from an unpolluted and polluted forest. Induced thermotolerance (larval pre-treatment at high, sub-lethal temperature) increases the species ability to overcome the negative effects of thermal stress, therefore we monitored the effect of this regime in larvae originating from both forests. Thermal regimes in this experiment predominantly influenced the alkaline phosphatases activity and it was affected by temperature, population origin, and their combined effect. Total acid phosphatases activity was changed only by the joint effect of temperature and population origin. Brain hsp70 concentration was under a significant individual and joint effect of temperature and population. In both populations, brain tissue hsp70 concentration and alkaline phosphatases activity should be taken under consideration as a battery with biomarker potential for thermal stress in L. dispar larvae as a bioindicator species.