Fractal and Fractional (Dec 2023)

Numerical Investigation of the Fractional Diffusion Wave Equation with the Mittag–Leffler Function

  • Madiha Shafiq,
  • Muhammad Abbas,
  • Emad K. El-Shewy,
  • Mahmoud A. E. Abdelrahman,
  • Noura F. Abdo,
  • Ali A. El-Rahman

DOI
https://doi.org/10.3390/fractalfract8010018
Journal volume & issue
Vol. 8, no. 1
p. 18

Abstract

Read online

A spline is a sufficiently smooth piecewise curve. B-spline functions are powerful tools for obtaining computational outcomes. They have also been utilized in computer graphics and computer-aided design due to their flexibility, smoothness and accuracy. In this paper, a numerical procedure dependent on the cubic B-spline (CuBS) for the time fractional diffusion wave equation (TFDWE) is proposed. The standard finite difference (FD) approach is utilized to discretize the Atangana–Baleanu fractional derivative (ABFD), while the derivatives in space are approximated through the CuBS with a θ-weighted technique. The stability of the propounded algorithm is analyzed and proved to be unconditionally stable. The convergence analysis is also studied, and it is of the order O(h2+(Δt)2). Numerical solutions attained by the CuBS scheme support the theoretical solutions. The B-spline technique gives us better results as compared to other numerical techniques.

Keywords