A physico-mechanical model of postnatal craniofacial growth in human
Ce Liang,
Arsalan Marghoub,
Antonio Profico,
Costantino Buzi,
Marius Didziokas,
Lara van de Lande,
Roman Hossein Khonsari,
David Johnson,
Paul O’Higgins,
Mehran Moazen
Affiliations
Ce Liang
Department of Mechanical Engineering, University College London, London WC1E 7JE, UK; Corresponding author
Arsalan Marghoub
Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
Antonio Profico
Department of Biology, University of Pisa, 56126 Pisa, Italy
Costantino Buzi
Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), 43007 Tarragona, Spain; Departament d’Història i Història de l’Art, Universitat Rovira i Virgili, 43002 Tarragona, Spain
Marius Didziokas
Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
Lara van de Lande
Department of Oral and Maxillofacial Surgery, Erasmus Medical Centre, 3015 GD Rotterdam, the Netherlands; Craniofacial Growth and Form Laboratory, Hôpital Necker–Enfants Malades, Assistance Publique - Hôpitaux de Paris, Faculté de Médecine, Université Paris Cité, 75015 Paris, France
Roman Hossein Khonsari
Craniofacial Growth and Form Laboratory, Hôpital Necker–Enfants Malades, Assistance Publique - Hôpitaux de Paris, Faculté de Médecine, Université Paris Cité, 75015 Paris, France
David Johnson
Oxford Craniofacial Unit, Oxford University Hospital, Oxford OX3 9DU, UK
Paul O’Higgins
Department of Archaeology and Hull York Medical School, University of York, York YO10 5DD, UK
Mehran Moazen
Department of Mechanical Engineering, University College London, London WC1E 7JE, UK; Corresponding author
Summary: Our fundamental understanding of the physico-mechanical forces that drive the size and shape changes of the cranium during ontogeny are limited. Biomechanical models based on finite element method present a huge opportunity to address this critical gap in our knowledge. Here, we describe a validated computational framework to predict normal craniofacial growth. Our results demonstrated that this approach is capable of predicting the growth of calvaria, face, and skull base. We highlighted the crucial role of skull base in antero-posterior growth of the face and also demonstrated the contribution of the maxillary expansion to the dorsoventral growth of the face and its interplay with the orbits. These findings highlight the importance of physical interactions of different components of the craniofacial system. The computational framework described here serves as a powerful tool to study fundamental questions in developmental biology and to advance treatment of conditions affecting the craniofacial system such as craniosynostosis.