Advanced Nonlinear Studies (Aug 2020)

Periodic Solutions of Non-autonomous Allen–Cahn Equations Involving Fractional Laplacian

  • Feng Zhenping,
  • Du Zhuoran

DOI
https://doi.org/10.1515/ans-2020-2075
Journal volume & issue
Vol. 20, no. 3
pp. 725 – 737

Abstract

Read online

We consider periodic solutions of the following problem associated with the fractional Laplacian: (-∂x⁢x)s⁢u⁢(x)+∂u⁡F⁢(x,u⁢(x))=0{(-\partial_{xx})^{s}u(x)+\partial_{u}F(x,u(x))=0} in ℝ{\mathbb{R}}. The smooth function F⁢(x,u){F(x,u)} is periodic about x and is a double-well potential with respect to u with wells at +1{+1} and -1 for any x∈ℝ{x\in\mathbb{R}}. We prove the existence of periodic solutions whose periods are large integer multiples of the period of F about the variable x by using variational methods. An estimate of the energy functional, Hamiltonian identity and Modica-type inequality for periodic solutions are also established.

Keywords