PLoS ONE (Jan 2014)

Mechanical stress downregulates MHC class I expression on human cancer cell membrane.

  • Rosanna La Rocca,
  • Rossana Tallerico,
  • Almosawy Talib Hassan,
  • Gobind Das,
  • Tadepally Lakshmikanth,
  • Marco Matteucci,
  • Carlo Liberale,
  • Maria Mesuraca,
  • Domenica Scumaci,
  • Francesco Gentile,
  • Gheorghe Cojoc,
  • Gerardo Perozziello,
  • Antonio Ammendolia,
  • Adriana Gallo,
  • Klas Kärre,
  • Giovanni Cuda,
  • Patrizio Candeloro,
  • Enzo Di Fabrizio,
  • Ennio Carbone

DOI
https://doi.org/10.1371/journal.pone.0111758
Journal volume & issue
Vol. 9, no. 12
p. e111758

Abstract

Read online

In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells) was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal), depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700-1800 cm(-1), indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK) cells cytotoxic recognition.