Animal (Nov 2021)
Effects of feed restriction during pregnancy on maternal reproductive outcome, foetal hepatic IGF gene expression and offspring performance in the rabbit
Abstract
Primiparous female rabbits have high nutritional requirements and, while it is recommended that they are subjected to an extensive reproductive rhythm, this could lead to overweight, affecting reproductive outcomes. We hypothesised that restricting food intake during the less energetic period of gestation could improve reproductive outcome without impairing offspring viability. This study compares two groups of primiparous rabbit does in an extensive reproductive programme, one in which feed was restricted from Day 0 to Day 21 of gestation (R021), and another in which does were fed ad libitum (control) throughout pregnancy. The mother and offspring variables compared were (1) mother reproductive outcomes at the time points pre-implantation (Day 3 postartificial insemination [AI]), preterm (Day 28 post-AI) and birth; and (2) the prenatal offspring characteristic IGF system gene expression in foetal liver, liver fibrosis and foetus sex ratio, and postnatal factor viability and growth at birth, and survival and growth until weaning. Feed restriction did not affect the conception rate, embryo survival, or the number of morulae and blastocysts recovered at Day 3 post-AI. Preterm placenta size and efficiency were similar in the two groups. However, both implantation rate (P < 0.001) and the number of foetuses (P = 0.05) were higher in the R021 mothers than controls, while there was no difference in foetal viability. Foetal size and weight, the weights of most organs, organ weight/BW ratios and sex ratio were unaffected by feed restriction; these variables were only affected by uterine position (P < 0.05). Conversely, in the R021 does, foetal liver IGBP1 and IGF2 gene expression were dysregulated despite no liver fibrosis and a normal liver structure. No effects of restricted feed intake were produced on maternal fertility, prolificacy, or offspring birth weight, but control females weaned more kits. Litter weight and mortality rate during the lactation period were also unaffected. In conclusion, pre-implantation events and foetal development were unaffected by feed restriction. While some genes of the foetal hepatic IGF system were dysregulated during pregnancy, liver morphology appeared normal, and the growth of foetuses and kits until weaning was unmodified. This strategy of feed restriction in extensive reproductive rhythms seems to have no significant adverse effects on dam reproductive outcome or offspring growth and viability until weaning.