Molecules (Aug 2024)

Dammarane-Type 3,4-<i>seco</i>-Triterpenoid from Silver Birch (<i>Betula pendula</i> Roth) Buds Induces Melanoma Cell Death by Promotion of Apoptosis and Autophagy

  • Lukasz Szoka,
  • Marcin Stocki,
  • Valery Isidorov

DOI
https://doi.org/10.3390/molecules29174091
Journal volume & issue
Vol. 29, no. 17
p. 4091

Abstract

Read online

Despite unquestionable advances in therapy, melanoma is still characterized by a high mortality rate. For years, high expectations have been raised by compounds of natural origin as a component of pharmacotherapy, particularly by triterpenes found in the bark of birch trees. In this study, 3,4-seco-dammara-4(29),20(21),24(25)-trien-3-oic acid (SDT) was isolated from buds of silver birch and its mechanisms of cell death induction, including apoptosis and autophagy, were determined. Cytotoxicity of SDT was evaluated by the cell viability test and clonogenic assay, whereas induction of apoptosis and autophagy was determined by annexin V staining and Western blot. The results revealed dose- and time-dependent reductions in viability of melanoma cells. Treatment of cells for 48 h led to an increase in the percentage of annexin V-positive cells, activation of caspase-8, caspase-9, and caspase-3, and cleavage of PARP, confirming apoptosis. Simultaneously, it was found that SDT increased the level of autophagy marker LC3-II and initiator of autophagy beclin-1. Pretreatment of cells with caspase-3 inhibitor or autophagy inhibitor significantly reduced the cytotoxicity of SDT and revealed that both apoptosis and autophagy contribute to a decrease in cell viability. These findings suggest that 3,4-seco-dammaranes may become a promising group of natural compounds for searching for anti-melanoma agents.

Keywords