Seonmul yeongu (May 2024)
American put options with regime-switching volatility
Abstract
We present an approach for pricing American put options with a regime-switching volatility. Our method reveals that the option price can be expressed as the sum of two components: the price of a European put option and the premium associated with the early exercise privilege. Our analysis demonstrates that, under these conditions, the perpetual put option consistently commands a higher price during periods of high volatility compared to those of low volatility. Moreover, we establish that the optimal exercise boundary is lower in high-volatility regimes than in low-volatility regimes. Additionally, we develop an analytical framework to describe American puts with an Erlang-distributed random-time horizon, which allows us to propose a numerical technique for approximating the value of American puts with finite expiry. We also show that a combined approach involving randomization and Richardson extrapolation can be a robust numerical algorithm for estimating American put prices with finite expiry.
Keywords