Journal of Social Computing (Dec 2022)

Measuring Community Resilience During the COVID-19 Based on Community Wellbeing and Resource Distribution

  • Jaber Valinejad,
  • Zhen Guo,
  • Jin-Hee Cho,
  • Ing-Ray Chen

DOI
https://doi.org/10.23919/JSC.2022.0019
Journal volume & issue
Vol. 3, no. 4
pp. 322 – 344

Abstract

Read online

The COVID-19 pandemic has severely harmed every aspect of our daily lives, resulting in a slew of social problems. Therefore, it is critical to accurately assess the current state of community functionality and resilience under this pandemic for successful recovery. To this end, various types of social sensing tools, such as tweeting and publicly released news, have been employed to understand individuals’ and communities’ thoughts, behaviors, and attitudes during the COVID-19 pandemic. However, some portions of the released news are fake and can easily mislead the community to respond improperly to disasters like COVID-19. This paper aims to assess the correlation between various news and tweets collected during the COVID-19 pandemic on community functionality and resilience. We use fact-checking organizations to classify news as real, mixed, or fake, and machine learning algorithms to classify tweets as real or fake to measure and compare community resilience (CR). Based on the news articles and tweets collected, we quantify CR based on two key factors, community wellbeing and resource distribution, where resource distribution is assessed by the level of economic resilience and community capital. Based on the estimates of these two factors, we quantify CR from both news articles and tweets and analyze the extent to which CR measured from the news articles can reflect the actual state of CR measured from tweets. To improve the operationalization and sociological significance of this work, we use dimension reduction techniques to integrate the dimensions.

Keywords