iScience (Sep 2024)
Illumination by short-wavelength light inside the blind spot decreases light detectability
Abstract
Summary: Although the optic disk corresponding to the blind spot contains no classical photoreceptors, it contains photopigment melanopsin. To clarify whether melanopsin is involved in light detection, we conducted detection tasks for light stimuli presented in the normal visual field, with and without another illumination inside the blind spot. We found that a blue blind-spot illumination decreased the light detectability on a dark background. This effect was replicable when it was determined immediately after the blind-spot illumination was turned off, suggesting the contribution of a sluggish system rather than scattering. Moreover, the aforementioned effect was not observed when the blind-spot illumination was in red, indicating wavelength specificity in favor of melanopsin’s sensitivity profile. These findings suggest that melanopsin is activated by the blind-spot illumination and thereby interferes with light detection near the absolute threshold. Light detection originating from conventional photoreceptors is modulated by melanopsin-based computation presumably estimating a baseline noise level.