Physical Review Research (Sep 2023)

Thermally induced local imbalance in repulsive binary Bose mixtures

  • G. Pascual,
  • G. Spada,
  • S. Pilati,
  • S. Giorgini,
  • J. Boronat

DOI
https://doi.org/10.1103/PhysRevResearch.5.L032041
Journal volume & issue
Vol. 5, no. 3
p. L032041

Abstract

Read online Read online

We study repulsive two-component Bose mixtures with equal populations and confined in a finite-size box through path-integral Monte Carlo simulations. For different values of the s-wave scattering length of the interspecies potential, we calculate the local population imbalance in a region of fixed volume inside the box at different temperatures. We find two different behaviors: For phase-separated states at T=0, thermal effects induce a diffusion process which reduces the local imbalance, whereas for miscible states at T=0, a maximum in the local population imbalance appears at a certain temperature, below the critical one. We show that this intriguing behavior is strongly related to the bunching effect associated with the Bose-Einstein statistics of the particles in the mixture and to an unexpected behavior of the cross pair distribution function.