Current Research in Food Science (Jan 2023)

Prevalence, antimicrobial resistance, and genetic characteristics of Staphylococcus aureus isolates in frozen flour and rice products in Shanghai, China

  • Jiang Chang,
  • Yi Zhang,
  • Zengfeng Zhang,
  • Bo Chen,
  • Shoukui He,
  • Zeqiang Zhan,
  • Nan Zhong,
  • Xiaorong Tian,
  • Shimo Kang,
  • Kannappan Arunachalam,
  • Chunlei Shi

Journal volume & issue
Vol. 7
p. 100631

Abstract

Read online

Staphylococcus aureus is widely recognized as a highly hazardous pathogen that poses significant threats to food safety and public health. This study aimed to assess the prevalence, antimicrobial resistance, and genetic characteristics of S. aureus isolates recovered from 288 frozen flour and rice product samples in Shanghai, China, between September 2019 and May 2020. A total of 81 S. aureus isolates were obtained, representing 25 sequence types (STs), with ST7 being the most prevalent (17.28%, n = 14). The majority of S. aureus isolates (85.19%, n = 69) carried at least one enterotoxin gene, with the seg gene being the most frequently detected (51.85%, n = 42). Additionally, 12 isolates (14.81%) were identified as methicillin-resistant S. aureus (MRSA) through mecA gene detection. Notably, this study reported the presence of an ST398 MRSA isolate in frozen flour and rice products for the first time. All MRSA isolates displayed multidrug resistance, with the highest resistance observed against cefoxitin (100.00%), followed by penicillin (91.67%) and erythromycin (66.67%). Genomic analysis of the 12 MRSA isolates revealed the presence of twenty distinct acquired antimicrobial resistance genes (ARGs), eight chromosomal point mutations, and twenty-four unique virulence genes. Comparative genome analysis indicated close genetic relationships between these MRSA isolates and previously reported MRSA isolates from clinical infections, highlighting the potential transmission of MRSA through the food chain and its implications for public health. Significantly, the identification of three plasmids harboring ARGs, insertion sequences (ISs), the origin of transfer site (oriT), and the relaxase gene suggested the potential for horizontal transfer of ARGs via conjugative plasmids in S. aureus. In conclusion, this study revealed significant contamination of retail frozen flour and rice products with S. aureus, and provided essential data for ensuring food safety and protecting public health.

Keywords