Validation of an Ultraviolet Light Response Gene Signature for Predicting Prognosis in Patients with Uveal Melanoma
Carlos A. Orozco,
Alejandro Mejía-García,
Marcela Ramírez,
Johanna González,
Luis Castro-Vega,
Richard B. Kreider,
Silvia Serrano,
Alba Lucia Combita,
Diego A. Bonilla
Affiliations
Carlos A. Orozco
Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia
Alejandro Mejía-García
Grupo de Investigación Genética Molecular (GENMOL), Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 050010, Colombia
Marcela Ramírez
Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia
Johanna González
Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia
Luis Castro-Vega
Genetics and Development of Brain Tumors Team, Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, 75013 Paris, France
Richard B. Kreider
Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA
Silvia Serrano
Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología de Colombia, Bogotá 111511, Colombia
Alba Lucia Combita
Grupo de Investigación Traslacional en Oncología, Instituto Nacional de Cancerología de Colombia, Bogotá 111511, Colombia
Diego A. Bonilla
Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia
Uveal melanoma (UVM) is a highly aggressive ocular cancer with limited therapeutic options and poor prognosis particularly for patients with liver metastasis. As such, the identification of new prognostic biomarkers is critical for developing effective treatment strategies. In this study, we aimed to investigate the potential of an ultraviolet light response gene signature to predict the prognosis of UVM patients. Our approach involved the development of a prognostic model based on genes associated with the cellular response to UV light. By employing this model, we generated risk scores to stratify patients into high- and low-risk groups. Furthermore, we conducted differential expression analysis between these two groups and explored the estimation of immune infiltration. To validate our findings, we applied our methodology to an independent UVM cohort. Through our study, we introduced a novel survival prediction tool and shed light on the underlying cellular processes within UVM tumors, emphasizing the involvement of immune subsets in tumor progression.