Majallah-i ḥifāẓat-i giyāhān (Nov 2022)
Investigation of Growth Characteristics and Phenological Stages of Papaver dubium L. and Papaver rhoeas L. Species Based on Growth Degree Day
Abstract
Introduction Plant development is defined as a series of phenological events that are controlled by external factors and determine changes in the shape or function of some organs. Temperature and photoperiod are two of the most important environmental factors affecting phenological development. Papaver rhoeas L. and Papaver dubium L., from the Papaveraceae family, are common annual winter weeds in northern Iran. The life cycle of these species is closely related to winter crops such as wheat (Triticum aestivum L.) and other winter cereals that compete severely with them. The Papaver species are capable of producing a huge amount of small-sized seeds that remain dormant at maturity. The timing of emergence, growth and sexual reproduction is highly important for the success of invasive weeds. Checking the phonological behavior of these plant species along with their seed production would be useful for decision-support systems helping managers select the best management strategies and, thereby, improving P. rhoeas and P. dubium control. Also, the phenology data would allow predicting these species invasibility of new areas. The present study was aimed to quantify the phonological behavior of these weeds. Materials and Methods In the present study, the phenology of P. rhoeas and P. dubium were studied in the research field at Agricultural Sciences and Natural Resources University of Sari, Iran, with an annual rainfall of 851 mm per year. Seeds of these species were collected from a wheat field located in Mazandaran province, north of Iran during spring 2018. These species seeds were cultivated on 12 November 2018. The phenological stages were recorded from emergence to the end of the seeding stage. The phenology was studied based on the growing degree day. At the end of the experiment, the period of each phenological stage was calculated based on the day and the growing degree day. In order to determine the morphological traits of the plant, eight sampling steps were performed. Morphological traits such as plant height, number of leaves, number of flowers, number of capsules, and dry matter were measured. Results and Discussion The results showed that P. rhoeas and P. dubium grow from 0 to 1723.56 and 1759.06 growth degrees day, respectively. During this period, seven phenological stages were recorded for these two species. These stages were included emergence, rosette (7-8 leaves), stem elongation and branching, blooming, flowering, fruiting, and seed maturity. The flowering stage period in both species was long, 48 days in P. dubium and 46 days in P. rhoeas. The results showed that the shortest and longest stages of development of these two weeds were emergence and stem elongation, respectively. In this study, the growth period of P. rhoeas and P. dubium took about eight months. It has some variation with regard to height, the number of flower, number of capsule and dry matter between both species under the same environmental conditions but both plants started their developmental stages at the same time and finished at almost the same rate. The trend of changes in height, number of leaves, number of flowers, number of capsules, and dry matter were similar in both species. The life cycle of these two species begins with germination in autumn and ends with seed production in late June. The longest period of growth stage in both species was in spring and this trend decreases in late spring. The flowering stage begins in late March and ends in mid-June. The maturity period of these two species was from mid-June to the end of the first decade of July. One of the characteristics of these two species is high seed production. In P. rhoeas, at the end of the fruiting stage, each plant produced an average of 13 capsules and each plant produced an average of 5000 seeds. Also, in P. dubium, each plant produced an average of 14 capsules, and each plant of this species produces an average of 5922 seeds. Conclusion Based on knowledge of the different phenological stages of the two species, it is possible to plan for proper management. From a managerial point of view, these two species should be controlled before the blooming stage; so that their seeds do not enter the seed bank, because their seeds are considered as causes of contamination in the field.
Keywords