PLoS ONE (Jan 2011)

Multi-modal proteomic analysis of retinal protein expression alterations in a rat model of diabetic retinopathy.

  • Heather D VanGuilder,
  • Georgina V Bixler,
  • Lydia Kutzler,
  • Robert M Brucklacher,
  • Sarah K Bronson,
  • Scot R Kimball,
  • Willard M Freeman

DOI
https://doi.org/10.1371/journal.pone.0016271
Journal volume & issue
Vol. 6, no. 1
p. e16271

Abstract

Read online

BACKGROUND: As a leading cause of adult blindness, diabetic retinopathy is a prevalent and profound complication of diabetes. We have previously reported duration-dependent changes in retinal vascular permeability, apoptosis, and mRNA expression with diabetes in a rat model system. The aim of this study was to identify retinal proteomic alterations associated with functional dysregulation of the diabetic retina to better understand diabetic retinopathy pathogenesis and that could be used as surrogate endpoints in preclinical drug testing studies. METHODOLOGY/PRINCIPAL FINDINGS: A multi-modal proteomic approach of antibody (Luminex)-, electrophoresis (DIGE)-, and LC-MS (iTRAQ)-based quantitation methods was used to maximize coverage of the retinal proteome. Transcriptomic profiling through microarray analysis was included to identify additional targets and assess potential regulation of protein expression changes at the mRNA level. The proteomic approaches proved complementary, with limited overlap in proteomic coverage. Alterations in pro-inflammatory, signaling and crystallin family proteins were confirmed by orthogonal methods in multiple independent animal cohorts. In an independent experiment, insulin replacement therapy normalized the expression of some proteins (Dbi, Anxa5) while other proteins (Cp, Cryba3, Lgals3, Stat3) were only partially normalized and Fgf2 and Crybb2 expression remained elevated. CONCLUSIONS/SIGNIFICANCE: These results expand the understanding of the changes in retinal protein expression occurring with diabetes and their responsiveness to normalization of blood glucose through insulin therapy. These proteins, especially those not normalized by insulin therapy, may also be useful in preclinical drug development studies.