Heliyon (Mar 2020)

Epstein-Barr virus-derived vector suitable for long-term expression in neurons

  • Kazuyuki Kiyosue,
  • Yoshihiro Miwa

Journal volume & issue
Vol. 6, no. 3
p. e03504

Abstract

Read online

Exogenous gene expression is a fundamental and indispensable technique for testing gene function in neurons. Several ways to express exogenous genes in neurons are available, but each method has pros and cons. The lentivirus vector is useful for high efficiency gene transfer to neurons and stabilizes gene expression via genome integration, but this integration may destroy the host genome. The Epstein-Barr virus (EBV)-derived vector (EB vector) is an accessible and useful vector in human cell lines because the vector is not integrated into the host genome but stays in the nucleus as an episome. However, there has been no report on this process in rodent neurons.We examined the usefulness of the EB vector for testing gene function in neurons. We found that EB vector-derived exogenous proteins such as green fluorescent protein (GFP) and GFP-tagged actin were easily detectable even after three weeks of transfection. Second, a tetracycline-induced gene expression system in the EB vector was active after three weeks of transfection, indicating that plasmids were retained in neurons for up to three weeks. Third, we determined that only Family of repeat element of the plasmid vector is essential for its long-term presence in neurons. These results show that the modified EB vector is a useful tool for examining gene function in neurons.

Keywords