Scientific Reports (Oct 2020)

Heterogeneous optoelectronic characteristics of Si micropillar arrays fabricated by metal-assisted chemical etching

  • Yang Qian,
  • David J. Magginetti,
  • Seokmin Jeon,
  • Yohan Yoon,
  • Tony L. Olsen,
  • Maoji Wang,
  • Jordan M. Gerton,
  • Heayoung P. Yoon

DOI
https://doi.org/10.1038/s41598-020-73445-x
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Recent progress achieved in metal-assisted chemical etching (MACE) has enabled the production of high-quality micropillar arrays for various optoelectronic applications. Si micropillars produced by MACE often show a porous Si/SiO x shell on crystalline pillar cores introduced by local electrochemical reactions. In this paper, we report the distinct optoelectronic characteristics of the porous Si/SiO x shell correlated to their chemical compositions. Local photoluminescent (PL) images obtained with an immersion oil objective lens in confocal microscopy show a red emission peak (≈ 650 nm) along the perimeter of the pillars that is threefold stronger compared to their center. On the basis of our analysis, we find an unexpected PL increase (≈ 540 nm) at the oil/shell interface. We suggest that both PL enhancements are mainly attributed to the porous structures, a similar behavior observed in previous MACE studies. Surface potential maps simultaneously recorded with topography reveal a significantly high surface potential on the sidewalls of MACE-synthesized pillars (+ 0.5 V), which is restored to the level of planar Si control (− 0.5 V) after removing SiO x in hydrofluoric acid. These distinct optoelectronic characteristics of the Si/SiO x shell can be beneficial for various sensor architectures.