Journal of Dental Sciences (Apr 2024)
The influence of pontic distribution on the marginal and internal gaps of CAD/CAM five-unit anterior zirconia framework
Abstract
Background/purpose: Nowadays, zirconia-based framework has been used for longspan or full-arch fixed dental prostheses (FDPs). This study aimed to evaluate the effect of pontic distribution on marginal and internal gaps of five-unit anterior zirconiabased DPs. Materials and methods: Right maxillary central incisor and second premolar were selected as terminal abutments and three different edentulous conditions with one nonterminal abutment were simulated. Marginal and internal gaps in each zirconia-based samples(n = 10) were examined by computer-aided replica technique. Five regions, including marginal gaps at mesial or distal finishing line, internal gaps at the mesial or distal axial wall, and occlusal surface, were statistically analyzed (α = .05). Results: Most of marginal gaps and internal gaps at axial wall were clinically acceptable, but larger at occlusal surface. For the three experimental groups, clinically accepted percentage with qualified gaps were less than 30%.There were statistical differences at axial wall over pontic side and marginal gaps over non-pontic side between groups (P<0.05). For sum of gaps of all abutments in each group, statistical differences were found at marginal and axial wall (P < 0.05). As for those on terminal and non-terminal abutments, statistical differences were found on second premolar (P < 0.05). Conclusion: Except for occlusal surface, the overall marginal gaps and internal gaps at axial wall of five-unit anterior zirconia-based FDPs with different pontic distribution were clinically acceptable. However, the percentage with qualified gaps were low (<30%). Greater gaps were noted when adjacent pontic existed. Different pontic size and distribution with curvature had an influence on the gaps.