MATEC Web of Conferences (Jan 2016)
Parameter Identification on Lumped Parameters of the Hydraulic Engine Mount Model
Abstract
Hydraulic Engine Mounts (HEM) are important vibration isolation components with compound structure in the vehicle powertrain mounting system. They have the characteristic that large damping and high dynamic stiffness in the high frequency region, and small damping and low dynamic stiffness in the low frequency region, which can meet the requirements of the vehicle powertrain mounting system better. The method to identify the lumped parameters of the HEM is not only the necessary work for the analysis and calculation in dynamic performance and can also provide the theory for the performance optimization and structure optimization of product in the future. The parameter identification method based on coupled fluid-structure interaction (FSI) and finite element analysis (FEA) was established in this study to identify the equivalent piston area of the rubber spring, the volume stiffness of the upper chamber, as well as the inertia coefficient and damping coefficient of the liquid through the inertia track. The simulated dynamic characteristic curves of the HEM with the parameters identified are in accordance with the measured dynamic characteristic curves well.