AMB Express (Jan 2021)
Agricultural by-products and oyster shell as alternative nutrient sources for microbial sealing of early age cracks in mortar
Abstract
Abstract Bio-concrete using bacterially produced calcium carbonate can repair microcracks but is still relatively expensive due to the addition of bacteria, nutrients, and calcium sources. Agricultural by-products and oyster shells were used to produce economical bio-concrete. Sesame meal was the optimal agricultural by-product for low-cost spore production of the alkaliphilic Bacillus miscanthi strain AK13. Transcriptomic dataset was utilized to compare the gene expressions of AK13 strain under neutral and alkaline conditions, which suggested that NaCl and riboflavin could be chosen as growth-promoting factors at alkaline pH. The optimal levels of sesame meal, NaCl, and riboflavin were induced with the central composite design to create an economical medium, in which AK13 strain formed more spores with less price than in commercial sporulation medium. Calcium nitrate obtained from nitric acid treatment of oyster shell powder increased the initial compressive strength of cement mortar. Non-ureolytic calcium carbonate precipitation by AK13 using oyster shell-derived calcium ions was verified by energy-dispersive X-ray spectroscopy and X-ray diffraction analysis. Stereomicroscope and field emission scanning electron microscopy confirmed that oyster shell-derived calcium ions, along with soybean meal-solution, increased the bacterial survival and calcium carbonate precipitation inside mortar cracks. These data suggest the possibility of commercializing bacterial self-healing concrete with economical substitutes for culture medium, growth nutrient, and calcium sources.
Keywords