BMC Genetics (Oct 2007)
The transcription of <it>MGAT4A </it>glycosyl transferase is increased in white cells of peripheral blood of Type 2 Diabetes patients
Abstract
Abstract Background Human glycosylase IV is involved in GLUT2 transporter regulation in pancreatic β cells. A KO of this gene along with a high fat diet in a mice model has been associated with the development of type 2 diabetes (T2D). The aims of this study were to measure and compare the MGAT4A mRNA levels in white blood cells (WBC) from T2D subjects and healthy subjects (T2NB), and to measure the half-life of the MGAT4A mRNA. Results We studied a sample of 73 individuals, 40 T2D subjects and 33 T2NB subjects. Anthropometrical and biochemical profiles were registered. The MGAT4A mRNA levels in WBC and the transcript half-life in Jurkat T cells were determined by Real-Time PCR. A blood differential cell counting was made for each individual. Cell counting showed T2D subjects exhibited an increased number of WBC compared to T2NB subjects (P = 0.0001). Biochemical parameters such as fasting glucose (P = 0.0001), and triglycerides (P = 0.002) were statistically significant. T2D subjects had 4.2-fold more MGAT4A transcript compared to T2NB subjects (P = 0.002). The MGAT4A mRNA had a half-life of 2.04 h in Jurkat T cells. Conclusion The results of this work suggest that in T2D subjects, high levels of glucose and triglycerides are accompanied by an increase on MGAT4A mRNA levels and WBC count; condition that suggests a pro-inflammatory state due to a chronic metabolic stress.