Nanophotonics (Apr 2020)

AI-assisted on-chip nanophotonic convolver based on silicon metasurface

  • Liao Kun,
  • Gan Tianyi,
  • Hu Xiaoyong,
  • Gong Qihuang

DOI
https://doi.org/10.1515/nanoph-2020-0069
Journal volume & issue
Vol. 9, no. 10
pp. 3315 – 3322

Abstract

Read online

Convolution operation is of great significance in on-chip all-optical signal processing, especially in signal analysis and image processing. It is a basic and important mathematical operation in the realization of all-optical computing. Here, we propose and experimentally implement a dispersionless metalens for dual wavelengths, a 4f optical processing system, and then demonstrate the on-chip nanophotonic convolver based on silicon metasurface with the optimization assistance of inverse design. The characteristic size of the dispersionless metalens device is 8 × 9.4 μm, and the focusing efficiency is up to 79% and 85% at wavelengths of 1000 and 1550 nm, respectively. The feature size of the convolver is 24 × 9.4 μm, and the proposed convolver allows spatial convolution operation on any desired function at dual wavelengths simultaneously. This work provides a potential scheme for the further development of on-chip all-optical computing.

Keywords