Genetics and Molecular Biology (Dec 2022)

Molecular evolution and structural analyses of proteins involved in metabolic pathways of volatile organic compounds in Petunia hybrida (Solanaceae)

  • Lucas C. Beltrame,
  • Claudia E. Thompson,
  • Loreta B. Freitas

DOI
https://doi.org/10.1590/1678-4685-gmb-2022-0114
Journal volume & issue
Vol. 46, no. 1 suppl 1

Abstract

Read online

Abstract The association between plants and their pollinators is essential for increasing the diversity in angiosperms. Morphological and physiological traits, mainly floral scent, can influence the pollination dynamics and select pollinators for each plant species. In this work, we studied two proteins involved in producing volatile organic compounds in plants, conyferyl alcohol acyltransferase (CFAT) and benzoyl-CoA:benzyl alcohol/phenyl ethanol benzoyl transferase (BPBT) genes. We aimed to understand these proteins with respect to evolutionary and structural aspects and functions in Solanaceae using phylogenetic methods and comparative molecular modeling. We used Bayesian inference to describe the proteins’ evolutionary history using Petunia x hybrida as a query to search for homologs in the Solanaceae family. Theoretical 3D models were obtained for both proteins using Panicum virgatum as a template. The phylogenetic tree included several different enzymes with diverse biological roles in Solanaceae, displaying the transferase domain. We identified only one sequence of CFAT in the databases, which belongs to Petunia x hybrida, and found several BPBT sequences from the genera Nicotiana, Solanum, and Capsicum. The 3D structures of CFAT and BPBT have two different domains, and we have identified the amino acid residues essential for the enzymatic activity and interaction with substrates.

Keywords