Atmosphere (May 2024)
Impacts of Land–Atmosphere Interactions on Boundary Layer Variables: A Classification Perspective from Modeling Approaches
Abstract
Previously, the types of impacts of land–atmosphere interactions have scarcely been clarified systematically. In this article, we present a classification of these impacts based on modeling boundary layer variables/parameters, which is grouped into local, regional, and remote impacts. In the narrow sense, land surface processes (LSPs) influence the atmospheric state via vertical land–atmosphere coupling at local scales, which is referred to as local LSP impacts. However, local LSP impacts can lead to the advection effect due to the horizontal heterogeneity in the parameters over a region, which can be defined as regional LSP impacts. Furthermore, remote LSP impacts on the regional atmospheric state are induced by some land/sea surface variables/parameters over remote key areas of the Earth’s surface, which are conventionally taken as strong signals of climate variation. Of the three impacts, local impacts are the most important essential, as the other two types of impacts are derived from these impacts. We describe the quantification of local impacts based on our previous studies from the perspective of modeling approaches, and we discuss some issues related to these impacts. Previous investigations showed that local LSP impacts are mostly stronger than regional LSP impacts, e.g., the diabatic process is dominant in the physical processes responsible for daily maximum temperatures, and two first-order physical processes including vertical diffusion largely induce changes in surface wind speed in China. Finally, some aspects for future research are noted. This study provides insights into the research on land–atmosphre interactions at different scales.
Keywords