Journal of Taibah University for Science (Dec 2023)

Ferro-hydrodynamic induced convection flow and heat transfer of nanofluids in a corrugated wall enclosure

  • Kasra Ayoubi Ayoubloo,
  • Shima Yazdani,
  • Mikhail Sheremet,
  • Obai Younis,
  • Mohammad Ghalambaz

DOI
https://doi.org/10.1080/16583655.2023.2215675
Journal volume & issue
Vol. 17, no. 1

Abstract

Read online

This study aims to improve heat transfer by utilizing Kelvin forces and inducing magnetic-induced convection in ferro-hydrodynamic convection, in conjunction with nanoparticle migrations. The fundamental equations governing the conservation of mass, momentum, energy, and nanoparticle mass were formulated as partial differential equations. As primary terms, the model incorporated the buoyancy, Lorenz, and Kelvin forces. In this context, temperature variations in the presence of a variable magnetic field generate a temperature-dependent body force. This can induce fluid circulation. Thus, even without gravitational force, magnetic force can stimulate convection heat transfer flows. The study thoroughly examined the impact of magnetic source placement on heat transfer. An increase in Ha from 0 to 100 reduced the average Nusselt number (NuAvg) by approximately 60% in all cases, regardless of the magnetic source position. However, the magnetic field number (Mnf) and its effect on NuAvg are dependent on the magnetic source's position.

Keywords