Energies (Jun 2022)
An Overview on Co-Pyrolysis of Biodegradable and Non-Biodegradable Wastes
Abstract
Continuous urbanization and modernization have increased the burning of fossil fuels to meet energy needs across the globe, emanating environmental pollution and depleting fossil fuels. Therefore, a shift towards sustainable and renewable energy is necessary. Several techniques to exploit biomass to yield energy are trending, with pyrolysis one of them. Usually, a single feedstock is employed in pyrolysis for anoxygenic generation of biochar together with bio-oil at elevated temperatures (350–600 °C). Bio-oil produced through pyrolysis can be upgraded to crude oil after some modification. However, these modifications of bio-oil are one of the major drawbacks for its large-scale adoption, as upgradation increases the overall cost. Therefore, in recent years the scientific community has been researching co-pyrolysis technology that involves the pyrolysis of lignocellulosic biomass waste with non-biodegradable waste. Co-pyrolysis reduces the need for post-modification of bio-oil, unlike pyrolysis of a single feedstock. This review article discusses the recent advancements and technological challenges in waste biomass co-pyrolysis, the mechanism of co-pyrolysis, and factors that affect co-pyrolysis. The current study critically analyzes different recent research articles presented in databases such as PubMed, MDPI, ScienceDirect, Springer, etc. Hence, this review is one-of-a-kind in that it attempts to explain each and every aspect of the co-pyrolysis process and its current progress in the scientific field. Consequently, this review also compiles the remarkable achievements in co-pyrolysis and recommendations for the future.
Keywords