Cell Death Discovery (Jun 2021)

IMiDs uniquely synergize with TKIs to upregulate apoptosis of Philadelphia chromosome-positive acute lymphoblastic leukemia cells expressing a dominant-negative IKZF1 isoform

  • Daisuke Harama,
  • Takashi Yahata,
  • Keiko Kagami,
  • Masako Abe,
  • Norie Ando,
  • Shin Kasai,
  • Minori Tamai,
  • Koshi Akahane,
  • Takeshi Inukai,
  • Nobutaka Kiyokawa,
  • Abd Aziz Ibrahim,
  • Kiyoshi Ando,
  • Kanji Sugita

DOI
https://doi.org/10.1038/s41420-021-00523-y
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 14

Abstract

Read online

Abstract The long-term prognosis of Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph + ALL) is still unsatisfactory even after the emergence of tyrosine kinase inhibitors (TKIs) against chimeric BCR-ABL, and this is associated with the high incidence of genetic alterations of Ikaros family zinc finger 1 (IKZF1), most frequently the hemi-allelic loss of exons 4–7 expressing a dominant-negative isoform Ik6. We found that lenalidomide (LEN), a representative of immunomodulatory drugs (IMiDs), which have been long used for the treatment of multiple myeloma, specifically induced accumulation of Ik6 with the disappearance of functional isoforms within 24 h (i.e., abrupt and complete shut-down of the IKZF1 activity) in Ik6-positive Ph+ALL cells in a neddylation-dependent manner. The functional IKZF3 isoforms expression was also abruptly and markedly downregulated. The LEN treatment specifically suppressed proliferation of Ik6-positive-Ph+ALL cells by inducing cell cycle arrest via downregulation of cyclins D3 and E and CDK2, and of importance, markedly upregulated their apoptosis in synergy with the TKI imatinib (IM). Apoptosis of IM-resistant Ph+ALL cells with T315I mutation of BCR-ABL was also upregulated by LEN in the presence of the newly developed TKI ponatinib. Analyses of flow cytometry, western blot, and oligonucleotide array revealed that apoptosis was caspase-/p53-dependent and associated with upregulation of pro-apoptotic Bax/Bim, enhanced dephosphorylation of BCR-ABL/Akt, and downregulation of oncogenic helicase genes HILLS, CDC6, and MCMs4 and 8. Further, the synergism of LEN with IM was clearly documented as a significant prolongation of survival in the xenograft mice model. Because this synergism was further potentiated in vitro by dexamethasone, a key drug for ALL treatment, the strategy of repositioning IMiDs for the treatment of Ik6-positive Ph+ALL patients certainly shed new light on an outpatient-based treatment option for achieving their long-term durable remission and higher QOL, particularly for those who are not tolerable to intensified therapeutic approaches.