GE: Portuguese Journal of Gastroenterology (Oct 2020)
Clinical Performance of New Software to Automatically Detect Angioectasias in Small Bowel Capsule Endoscopy
Abstract
Background: Video capsule endoscopy (VCE) revolutionized the diagnosis and management of obscure gastrointestinal bleeding, though the rate of detection of small bowel lesions by the physician is still disappointing. Our group developed a novel algorithm (CMEMS-Uminho) to automatically detect angioectasias which display greater accuracy in VCE static frames than other methods previously published. We aimed to evaluate the algorithm overall performance and assess its diagnostic yield and usability in clinical practice. Methods: Algorithm overall performance was determined using 54 full-length VCE recordings. To assess its diagnostic yield and usability in clinical practice, 38 VCE examinations with the clinical diagnosis of angioectasias consecutively performed (2017–2018) were evaluated by three physicians with different experiences. The CMEMS-Uminho algorithm was also applied. The performance of the CMEMS-Uminho algorithm was defined by a positive concordance between a frame automatically selected by the software and a study independent capsule endoscopist. Results: Overall performance in complete VCE recordings was 77.7%, and diagnostic yield was 94.7%. There were significant differences between physicians in regard to global detection rate (p < 0.001), detection rate per capsule (p < 0.001), diagnostic yield (p = 0.007), true positive rate (p < 0.001), time (p < 0.001), and speed viewing (p < 0.001). The application of CMEMS-Uminho algorithm significantly enhanced all readers’ global detection rate (p < 0.001) and the differences between them were no longer observed. Conclusion: The CMEMS-Uminho algorithm detained a good overall performance and was able to enhance physicians’ performance, suggesting a potential usability of this tool in clinical practice.
Keywords