Remote Sensing (Feb 2020)

Which Precipitation Product Works Best in the Qinghai-Tibet Plateau, Multi-Source Blended Data, Global/Regional Reanalysis Data, or Satellite Retrieved Precipitation Data?

  • Lei Bai,
  • Yuanqiao Wen,
  • Chunxiang Shi,
  • Yanfen Yang,
  • Fan Zhang,
  • Jing Wu,
  • Junxia Gu,
  • Yang Pan,
  • Shuai Sun,
  • Junyao Meng

DOI
https://doi.org/10.3390/rs12040683
Journal volume & issue
Vol. 12, no. 4
p. 683

Abstract

Read online

Precipitation serves as a crucial factor in the study of hydrometeorology, ecology, and the atmosphere. Gridded precipitation data are available from a multitude of sources including precipitation retrieved by satellites, radar, the output of numerical weather prediction models, and extrapolation by ground rain gauge data. Evaluating different types of products in ungauged regions with complex terrain will not only help researchers in applying scientific data, but also provide useful information that can be used to improve gridded precipitation products. The present study aims to evaluate comprehensively 12 precipitation datasets made by raw retrieved products, blended with rain gauge data, and blended multiple source datasets in multi-temporal scales in order to develop a suitable method for creating gridded precipitation data in regions with snow-dominated regions with complex terrain. The results show that the Multi-Source Weighted-Ensemble Precipitation (MSWEP), Global Satellite Mapping of Precipitation with Gauge Adjusted (GSMaP_GAUGE), Tropical Rainfall Measuring Mission (TRMM_3B42), Climate Prediction Center Morphing Technique blended with Chinese observations (CMORPH_SUN), and Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) can represent the spatial pattern of precipitation in arid/semi-arid and humid/semi-humid areas of the Qinghai-Tibet Plateau on a climatological spatial pattern. On interannual, seasonal, and monthly scales, the TRMM_3B42, GSMaP_GAUGE, CMORPH_SUN, and MSWEP outperformed the other products. In general, the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN_CCS) has poor performance in basins of the Qinghai-Tibet Plateau. Most products overestimated the extreme indices of the 99th percentile of precipitation (R99), the maximal of daily precipitation in a year (Rmax), and the maximal of pentad accumulation of precipitation in a year (R5dmax). They were underestimated by the extreme index of the total number of days with daily precipitation less than 1 mm (dry day, DD). Compared to products blended with rain gauge data only, MSWEP blended with more data sources, and outperformed the other products. Therefore, multi-sources of blended precipitation should be the hotspot of regional and global precipitation research in the future.

Keywords