Subterranean Biology (May 2024)

Cavefish dorsoventral axis angle during wall swimming: laterality asymmetry

  • Jordi Espinasa,
  • Luis Espinasa

DOI
https://doi.org/10.3897/subtbiol.49.121747
Journal volume & issue
Vol. 49
pp. 19 – 29

Abstract

Read online Read online Read online

The Astyanax fish exhibits two morphs: an eyed, pigmented surface morph and an eyeless, depigmented cave morph. Previous studies have shown that blind morphs swim nearly parallel to the wall and can sense detailed information about objects by gliding alongside them and sensing changes in the flow field around their body using their lateral line sensory system. Hence, cavefish can build hydrodynamic images of their surroundings. Field observations showed that one of their presumptive prey, mysid shrimp, is predominately found not on the floor, but crawling on the walls. In our study, the angle of the body axis with respect to a vertical wall was measured while fish swam in a tank. Results show that when swimming by a wall, cavefish incline the vertical axis of their body away from the wall. But most significantly, this angle is different when the right side or the left side of their body is oriented towards the wall. Intriguingly, cavefish have a leftward-biased dorso-cranial bend, where the convex side of the head is towards their right side. Other studies have shown behavioral “handedness”. When exhibiting Vibration Attraction Behavior (VAB), cavefish in the field show laterality on the preponderant side they circle to explore a vibrating stimulus. Likewise in larval prey capture (LPC) behavior, larvae strike towards prey preferentially located on one side. Our results support that cavefish also express behavioral lateralization during passive swimming by walls and/or when searching for food that is perched on the walls, such as mysid shrimp.