APL Photonics (Aug 2024)

Linewidth narrowing in self-injection locked lasers: Effects of quantum confinement

  • Artem Prokoshin,
  • Weng W. Chow,
  • Bozhang Dong,
  • Frederic Grillot,
  • John Bowers,
  • Yating Wan

DOI
https://doi.org/10.1063/5.0214254
Journal volume & issue
Vol. 9, no. 8
pp. 086106 – 086106-10

Abstract

Read online

This paper explores the impact of gain medium on linewidth narrowing in integrated self-injection locked III–V/SiN lasers, theoretically and experimentally. We focus on the effects of carrier densities of states in zero- and two-dimensional structures due to quantum-dot and quantum-well confinement. The theoretical approach includes (a) multimode laser interaction to treat mode competition and wave mixing, (b) quantum-optical contributions from spontaneous emission, and (c) composite laser/free-space eigenmodes to describe outcoupling and coupling among components within an extended cavity. For single-cavity lasers, such as distributed feedback lasers, the model reproduces the experimentally observed better linewidth performance of quantum-dot active regions over quantum-well ones. When applied to integrated III–V/SiN lasers, our analysis indicates Hz-level linewidth performance for both quantum-dot and quantum-well gain media due to overcoming the difference in carrier-induced refractive index by incorporating a high-Q SiN passive resonator. Trade-offs are also explored between linewidth, output power, and threshold current.