International Journal of Computational Intelligence Systems (Jan 2019)

A Novel Method Based on Extended Uncertain 2-tuple Linguistic Muirhead Mean Operators to MAGDM under Uncertain 2-Tuple Linguistic Environment

  • Yi Liu,
  • Jun Liu,
  • Ya Qin,
  • Yang Xu

DOI
https://doi.org/10.2991/ijcis.d.190315.001
Journal volume & issue
Vol. 12, no. 2

Abstract

Read online

The present work is focused on multi-attribute group decision-making (MAGDM) problems with the uncertain 2-tuple linguistic information (ULI2–tuple) based on new aggregation operators which can capture interrelationships of attributes by a parameter vector P. To begin with, we present some new uncertain 2-tuple linguistic MM aggregation (UL2–tuple-MM) operators to handle MAGDM problems with ULI2–tuple, including the uncertain 2-tuple linguistic Muirhead mean (UL2–tuple-MM) operator, uncertain 2-tuple linguistic weighted Muirhead mean (UL2–tuple-WMM) operator. In addition, we extend UL2–tuple-WMM operator to a new aggregation operator named extended uncertain 2-tuple linguistic weighted Muirhead mean (EUL2–tuple-WMM) operators in order to handle some decision-making problems with ULI2–tuple whose attribute values are expressed in ULI2–tuple and attribute weights are also 2-tuple linguistic information. Whilst, the some properties of these new aggregation operators are obtained and some special cases are discussed. Moreover, we propose a new method to solve the MAGDM problems with ULI2–tuple. Finally, a numerical example is given to show the validity of the proposed method and the advantages of proposed method are also analysed.

Keywords