Environment International (Mar 2024)

Potential toxic components in size-resolved particles and gas from residential combustion: Emission factor and health risk

  • Xiao Liu,
  • Qianqian Xue,
  • Yingze Tian,
  • Bin Jia,
  • Rui Chen,
  • Ruiqing Huo,
  • Xiaoning Wang,
  • Yinchang Feng

Journal volume & issue
Vol. 185
p. 108551

Abstract

Read online

Particulate matter (PM) from residential combustion is an existential threat to human health. Emission factors (EFs) of multiple potential toxic components (PTCs) in size-resolved PM and gas from eight residential fuel combustion were measured, and size distribution, gas/particle partitioning and health risks of the PTCs were investigated. Average EFs from clean coal and anthracite coal were PTEs (sum of EFs of 11 Potential Toxic Elements, 6.62 mg/kg fuels) > PAHs (sum of 22 Polycyclic Aromatic Hydrocarbons, 1.12 mg/kg) > OPAHs (sum of 5 Oxygenated Polycyclic Aromatic Hydrocarbons, 0.45 mg/kg) > PAEs (sum of 6 Phthalate Esters, 0.11 mg/kg) > NPAHs (sum of 14 Nitropolycyclic Aromatic Hydrocarbons, 16.84 μg/kg) > OPEs (sum of 7 Organophosphate Esters, 7.57 μg/kg) > PCBs (sum of 6 Polychorinated Biphenyls, 0.07 μg/kg), which were 2–3 and 1–2 orders of magnitude lower than the EFs of PTCs (except PTEs) from bituminous coal and biomass. Most PAHs, OPAHs and NPAHs, which may mainly originate from chemical reactions, showed similar size distributions and averagely 85 % concentrated in PM1. PTEs, PAEs, OPEs and PCBs generated from the release from raw fuels may have a higher proportion, so their size distributions were more complex and varied with combustion temperature, volatility of compounds, binding mode of the raw fuels, and so on. In addition, clean coal and high-quality anthracite coal could reduce the health risks from the potential organic toxic components, but also reveal the stumbling block of PTEs in risk control.

Keywords