European Journal of Medical Research (May 2025)

Progress of microneedle targeted modulation technology in the reconstruction of immune microenvironment in diabetic wounds

  • Shunsheng Wang,
  • Wei Cheng,
  • Xue Wang,
  • Zhuofan Wu,
  • Jiandong Su

DOI
https://doi.org/10.1186/s40001-025-02667-4
Journal volume & issue
Vol. 30, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Wound healing in diabetic patients is mainly hindered by a combination of long-term glycosylation, persistent inflammatory response, and immunosuppressive state. The interaction of these factors not only results in considerable prolongation of the wound healing process but also elevates the likelihood of recurrent ulcer development, profoundly affecting patients’ quality of life. Traditional treatments, including surgical debridement, anti-infection, dressing application, vascular intervention, and glycaemic control, can only relieve some symptoms. However, they are often ineffective in addressing the underlying cause of impaired wound healing. It is of concern that the importance of the immune microenvironment in diabetic wound healing has not yet been fully appreciated and investigated, and the homeostasis of the immune microenvironment is crucial for promoting cell proliferation, angiogenesis, and tissue repair. However, this microenvironment is often dysregulated in the diabetic state. This paper reviews the key factors leading to dysregulation of the immune microenvironment, including immune cell dysfunction, abnormal cytokine expression, and disruption of key signalling pathways, and introduces an innovative silicone-based microneedle drug delivery method, which takes advantage of microneedle’s precise targeting and highly efficient drug loading capacity to deliver drugs with immunomodulatory functions directly to the wound in a sustained manner, activate the corresponding signalling pathways, promote the polarization of M1 macrophages into the M2 phenotype, and stimulate neovascularization, providing a low inflammatory and pro-angiogenic immune microenvironment for diabetic wound healing, which provides a new therapeutic idea and means for diabetic wound healing.

Keywords