Biotechnology for Biofuels (Aug 2020)

Inhibition of glucose assimilation in Auxenochlorella protothecoides by light

  • Yibo Xiao,
  • Jianying Guo,
  • Huachang Zhu,
  • Anwar Muhammad,
  • Haiteng Deng,
  • Zhangli Hu,
  • Qingyu Wu

DOI
https://doi.org/10.1186/s13068-020-01787-9
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background The yield of microalgae biomass is the key to affect the accumulation of fatty acids. A few microalgae can assimilate organic carbon to improve biomass yield. In mixotrophic cultivation, microalgae can use organic carbon source and light energy simultaneously. The preference of the main energy source by microalgae determines the biomass yield. Auxenochlorella protothecoides is an oleaginous mixotrophic microalga that can efficiently assimilate glucose and accumulate a large amount of biomass and fatty acids. The current study focused on the effect of light on the growth and glucose assimilation of A. protothecoides. Results In this study, we found that the uptake and metabolism of glucose in A. protothecoides could be inhibited by light, resulting in a reduction of biomass growth and lipid accumulation. We employed comparative proteomics to study the influence of light on the regulation of glucose assimilation in A. protothecoides. Proteomics revealed that proteins involving in gene translation and photosynthesis system were up-regulated in the light, such as ribulose-phosphate 3-epimerase and phosphoribulokinase. Calvin cycle-related proteins were also up-regulated, suggesting that light may inhibit glucose metabolism by enhancing the production of glyceraldehyde-3-phosphate (G3P) in the Calvin cycle. In addition, the redox homeostasis-related proteins such as thioredoxin reductase were up-regulated in the light, indicating that light may regulate glucose uptake by changing the redox balance. Moreover, the increase of NADH levels and redox potential of the medium under illumination might inhibit the activity of the glucose transport system and subsequently reduce glucose uptake. Conclusions A theoretical model of how glucose assimilation in A. protothecoides is negatively influenced by light was proposed, which will facilitate further studies on the complex mechanisms underlying the transition from autotrophy to heterotrophy for improving biomass accumulation.

Keywords