PLoS Computational Biology (Aug 2007)

Distributed representations accelerate evolution of adaptive behaviours.

  • James V Stone

DOI
https://doi.org/10.1371/journal.pcbi.0030147
Journal volume & issue
Vol. 3, no. 8
p. e147

Abstract

Read online

Animals with rudimentary innate abilities require substantial learning to transform those abilities into useful skills, where a skill can be considered as a set of sensory-motor associations. Using linear neural network models, it is proved that if skills are stored as distributed representations, then within-lifetime learning of part of a skill can induce automatic learning of the remaining parts of that skill. More importantly, it is shown that this "free-lunch" learning (FLL) is responsible for accelerated evolution of skills, when compared with networks which either 1) cannot benefit from FLL or 2) cannot learn. Specifically, it is shown that FLL accelerates the appearance of adaptive behaviour, both in its innate form and as FLL-induced behaviour, and that FLL can accelerate the rate at which learned behaviours become innate.