Frontiers in Endocrinology (Nov 2022)

ADAR1-dependent editing regulates human β cell transcriptome diversity during inflammation

  • Florian Szymczak,
  • Roni Cohen-Fultheim,
  • Sofia Thomaidou,
  • Alexandra Coomans de Brachène,
  • Angela Castela,
  • Maikel Colli,
  • Piero Marchetti,
  • Erez Levanon,
  • Decio Eizirik,
  • Arnaud Zaldumbide

DOI
https://doi.org/10.3389/fendo.2022.1058345
Journal volume & issue
Vol. 13

Abstract

Read online

IntroductionEnterovirus infection has long been suspected as a possible trigger for type 1 diabetes. Upon infection, viral double-stranded RNA (dsRNA) is recognized by membrane and cytosolic sensors that orchestrate type I interferon signaling and the recruitment of innate immune cells to the pancreatic islets. In this context, adenosine deaminase acting on RNA 1 (ADAR1) editing plays an important role in dampening the immune response by inducing adenosine mispairing, destabilizing the RNA duplexes and thus preventing excessive immune activation.MethodsUsing high-throughput RNA sequencing data from human islets and EndoC-βH1 cells exposed to IFNα or IFNγ/IL1β, we evaluated the role of ADAR1 in human pancreatic β cells and determined the impact of the type 1 diabetes pathophysiological environment on ADAR1-dependent RNA editing.ResultsWe show that both IFNα and IFNγ/IL1β stimulation promote ADAR1 expression and increase the A-to-I RNA editing of Alu-Containing mRNAs in EndoC-βH1 cells as well as in primary human islets.DiscussionWe demonstrate that ADAR1 overexpression inhibits type I interferon response signaling, while ADAR1 silencing potentiates IFNα effects. In addition, ADAR1 overexpression triggers the generation of alternatively spliced mRNAs, highlighting a novel role for ADAR1 as a regulator of the β cell transcriptome under inflammatory conditions.

Keywords