Mathematics (Jan 2019)

Fixpointed Idempotent Uninorm (Based) Logics

  • Eunsuk Yang

DOI
https://doi.org/10.3390/math7010107
Journal volume & issue
Vol. 7, no. 1
p. 107

Abstract

Read online

Idempotent uninorms are simply defined by fixpointed negations. These uninorms, called here fixpointed idempotent uninorms, have been extensively studied because of their simplicity, whereas logics characterizing such uninorms have not. Recently, fixpointed uninorm mingle logic (fUML) was introduced, and its standard completeness, i.e., completeness on real unit interval [ 0 , 1 ] , was proved by Baldi and Ciabattoni. However, their proof is not algebraic and does not shed any light on the algebraic feature by which an idempotent uninorm is characterized, using operations defined by a fixpointed negation. To shed a light on this feature, this paper algebraically investigates logics based on fixpointed idempotent uninorms. First, several such logics are introduced as axiomatic extensions of uninorm mingle logic (UML). The algebraic structures corresponding to the systems are then defined, and the results of the associated algebraic completeness are provided. Next, standard completeness is established for the systems using an Esteva⁻Godo-style approach for proving standard completeness.

Keywords