Shock and Vibration (Jan 2018)
A Tuned Mass Damper with Nonlinear Magnetic Force for Vibration Suppression with Wide Frequency Range of Offshore Platform under Earthquake Loads
Abstract
Tuned mass dampers (TMDs) are applied to ensure the safety and stability of offshore platforms; however, linear dampers are effective for a single resonance frequency, providing vibration suppression only within a narrow frequency band. Therefore, this paper proposed a magnetic TMD with two pairs of permanent magnets on both sides of the structures, which can generate a nonlinearly repulsive force, making the magnetic TMD reliable and robust in damping the oscillations of structures with wide frequency range under seismic excitations. A comprehensively numerical and experimental study was processed to investigate the dynamic performances of the proposed magnetic TMD, by application of a 1 : 200-scale prototype of the offshore platform. The results verified that the performance of the magnetic TMD can be significantly improved than that of the linear TMD, meanwhile maintaining high-speed response characteristics. The experimental results indicated that the displacement, acceleration, and frequency responses of the offshore platform can be significantly reduced; furthermore, the evaluation indices showed that the magnetic TMD system is credible in reducing the overall vibration levels and maximum peak values.