PLoS ONE (Jan 2014)

Interleukin-7 optimizes FOXP3+CD4+ regulatory T cells reactivity to interleukin-2 by modulating CD25 expression.

  • Federico Simonetta,
  • Nicolas Gestermann,
  • Stéphane Bloquet,
  • Christine Bourgeois

DOI
https://doi.org/10.1371/journal.pone.0113314
Journal volume & issue
Vol. 9, no. 12
p. e113314

Abstract

Read online

The vast majority of Foxp3 regulatory T cells (Treg) exhibits constitutive expression of CD25 (IL-2Rα), which allows the constitution of the high affinity IL-2Rαβγ receptor, ensuring efficient IL-2 binding by Treg. Maintenance of CD25 expression at Treg surface depends on both cell intrinsic factors and environmental stimuli such as IL-2 itself. Whether other factors can participate to maintenance of CD25 expression in vivo is at present unknown. In the present work we demonstrated that IL-7, a gamma-chain cytokine exerting a crucial role in T cell development and homeostasis, is able and necessary to sustain the expression of high levels of CD25 at Treg surface. We demonstrated that, during in vitro cultures performed in the absence of IL-2, IL-7 is able to sustain CD25 expression at Treg surface through a transcriptional mechanism. By studying mice in which IL-7 signaling is either genetically impaired or increased and by employing adoptive transfer murine models, we demonstrated that IL-7 is necessary for sustained expression of CD25 at Treg surface in vivo. To ascertain the biological impact of IL-7 mediated modulation of CD25 expression, we demonstrated that IL-7 modulation of CD25 expression at Treg surface affected their ability to efficiently bind IL-2 and transduce IL-2 signaling. Finally, we demonstrated that IL-7 dependent modulation of CD25 associated with potentiated IL-2 induced expansion of Treg in vivo. Collectively, our results identify IL-7 as a necessary factor contributing to sustained CD25 expression at Treg surface in vivo thereby affecting their ability to efficiently react to IL-2.