Journal of Functional Morphology and Kinesiology (Apr 2023)

The Impact of Nordic Walking Pole Length on Gait Kinematic Parameters

  • Luca Russo,
  • Guido Belli,
  • Andrea Di Blasio,
  • Elena Lupu,
  • Alin Larion,
  • Francesco Fischetti,
  • Eleonora Montagnani,
  • Pierfrancesco Di Biase Arrivabene,
  • Marco De Angelis

DOI
https://doi.org/10.3390/jfmk8020050
Journal volume & issue
Vol. 8, no. 2
p. 50

Abstract

Read online

Nordic walking (NW) is a popular physical activity used to manage chronic diseases and maintain overall health and fitness status. This study aimed to compare NW to ordinary walking (W) with regard to pole length and to identify kinematic differences associated with different poles’ length (55%, 65% and 75% of the subject’s height, respectively). Twelve male volunteers (21.1 ± 0.7 years; 1.74 ± 0.05 m; 68.9 ± 6.1 kg) were tested in four conditions (W, NW55, NW65 and NW75) at three different speeds (4-5-6 km∗h−1). Each subject performed a total of twelve tests in a random order. Three-dimensional kinematics of upper and lower body were measured for both W and NW, while oxygen consumption levels (VO2) and rating of perceived exertion (RPE) were measured only for NW trials with different poles’ length. NW showed a higher step length, lower elbow motion and higher trunk motion (p p p 2 (p −1. In conclusion, the use of the poles affects the motion of the upper and lower body during gait. Poles with shorter or longer length do not produce particular changes in NW kinematics. However, increasing the length of the pole can be a smart variation in NW to increase exercise metabolic demand without significantly affecting the kinematics and the RPE.

Keywords