Separations (Apr 2018)

Assessment, Validation and Application to Real Samples of an RP-HPLC Method for the Determination of Guayulins A, B, C and D in Guayule Shrub

  • Nadia Spano,
  • Paola Meloni,
  • Ilenia Idda,
  • Alberto Mariani,
  • Maria Itria Pilo,
  • Valeria Marina Nurchi,
  • Joanna Izabela Lachowicz,
  • Ernesto Rivera,
  • Ancelmo Orona-Espino,
  • Gavino Sanna

DOI
https://doi.org/10.3390/separations5020023
Journal volume & issue
Vol. 5, no. 2
p. 23

Abstract

Read online

Guayule (Parthenium argentatum Gray) is a shrub native to the arid regions of Mexico. In the last decades, significant attention to its cultivation has arisen because it is the raw material for the production of hypoallergenic natural rubber. Guayule biomass also contains high amounts of resin, which is not normally exploited in any way. Among other sesquiterpenic esters, guayulins (i.e., the parteniol esters of cinnamic acid, guayulin A, or of anisic acid, guayulin B) are contained in resin. In addition, minor amounts of guayulin C and guayulin D are formed by degradation/oxidation of guayulins A and B, respectively. Guayulins likely act as cinnamate and p-anisate reservoirs for the Guayule shrub; in addition, it has been postulated that they might have a key role in the chemical defense system of Guayule. Furthermore, it seems reasonable that guayulins may possess significant biological properties (e.g., antibacterial and anticancer activities), in close analogy with those shown by sesquiterpene lactones contained in many other species of Parthenum genus. As a matter of fact, guayulins A and B play an important role in the synthesis of antineoplastics used in breast cancer treatment. In this contribution we propose an original and validated RP-HPLC approach to the simultaneous quantification of guayulins A, B, C and D. The procedure of resin extraction from Guayule biomass has been optimized in terms of both extraction method and solvent. RP-HPLC separation has been accomplished by an Ascentis® C18 column under isocratic elution with a 80:20 (v:v) acetonitrile:water mixture. Validation was carried out in terms of limits of detection and quantification, linearity, precision, and trueness. Finally, the method was tested with a number of fresh and seasoned samples of spontaneous Guayule shrub from Mexico.

Keywords