Applied Sciences (Sep 2020)
Instance Segmentation Method of User Interface Component of Games
Abstract
On the game screen, the UI interface provides key information for game play. A vision deep learning network exploits pure pixel information in the screen. Apart from this, if we separately extract the information provided by the UI interface and use it as an additional input value, we can enhance the learning efficiency of deep learning networks. To this end, by effectively segmenting UI interface components such as buttons, image icons, and gauge bars on the game screen, we should be able to separately analyze only the relevant images. In this paper, we propose a methodology that segments UI components in a game by using synthetic game images created on a game engine. We developed a tool that approximately detected the UI areas of an image in games on the game screen and generated a large amount of synthetic labeling data through this. By training this data on a Pix2Pix, we applied UI segmentation. The network trained in this way can segment the UI areas of the target game regardless of the position of the corresponding UI components. Our methodology can help analyze the game screen without applying data augmentation to the game screen. It can also help vision researchers who should extract semantic information from game image data.
Keywords