Vestnik KRAUNC: Fiziko-Matematičeskie Nauki (Nov 2024)
Задача Коши для уравнения дробного порядка с инволюцией
Abstract
В работе рассматривается линейное обыкновенное дифференциальное уравнение с производной дробного порядка, которое содержит оператор инволюции в подчиненном слагаемом. Рассматриваемое уравнение является модельным и относится к классу дифференциальных уравнений, к необходимости исследовать которые приводит изучение краевых задач для дифференциальных уравнений дробного порядка, содержащих композицию лево- и правосторонних операторов дробного дифференцирования. Последние возникают при моделировании различных физических и геофизических процессов, и, в частности, имеет важное значение при описании диссипативных колебательных систем. Для рассматриваемого уравнения исследуется начальная задача в единичном интервале. Основной результат работы – теорема существования и единственности решения изучаемой задачи. В терминах ограничений на коэффициент и правую часть рассматриваемого уравнения сформулированы достаточные условия, обеспечивающие однозначную разрешимость исследуемой задачи. Построено фундаментальное решение, получены его различные представления, изучены его основные свойства. В терминах фундаментального решения найдено явное представление решения исследуемой задачи.
Keywords